History of Mathematics in India

Why, one might ask, did Europe take over thousand years to attain the level of abstract mathematics achieved by Indians such as Aaryabhatta?
The answer appears to be that Europeans were trapped in the relatively simplistic and concrete geometrical mathematics developed by the Greeks.
It was not until they had, via the Arabs, received, assimilated and accepted the place-value system of enumeration developed in India that they were able to free their minds from the concrete and develop more abstract systems of thought.
This development thus triggered the scientific and information technology revolutions which swept Europe and, later, the world.
The role played by India in the development is no mere footnote, easily and inconsequentially swept under the rug of Eurocentric bias. To do so is to distort history, and to deny India one of it’s greatest contributions to world civilization.
In India a decimal system was already in place during the Harappan period, as indicated by an analysis of Harappan weights and measures.
Weights corresponding to ratios of 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, and 500 have been identified, as have scales with decimal divisions. A particularly notable characteristic of Harappan weights and measures is their remarkable accuracy.
A bronze rod marked in units of 0.367 inches points to the degree of precision demanded in those times. Such scales were particularly important in ensuring proper implementation of town planning rules that required roads of fixed widths to run at right angles to each other, for drains to be constructed of precise measurements, and for homes to be constructed according to specified guidelines.
The existence of a gradated system of accurately marked weights points to the development of trade and commerce in Harappan society.
In the Vedic period, records of mathematical activity are mostly to be found in Vedic texts associated with ritual activities. However, as in many other early agricultural civilizations, the study of arithmetic and geometry was also impelled by secular considerations. Thus, to some extent early mathematical developments in India mirrored the developments in Egypt, Babylon and China .
The system of land grants and agricultural tax assessments required accurate measurement of cultivated areas. As land was redistributed or consolidated, problems of mensuration came up that required solutions. In order to ensure that all cultivators had equivalent amounts of irrigated and non-irrigated lands and tracts of equivalent fertility – individual farmers in a village often had their holdings broken up in several parcels to ensure fairness.
Since plots could not all be of the same shape – local administrators were required to convert rectangular plots or triangular plots to squares of equivalent sizes and so on. Tax assessments were based on fixed proportions of annual or seasonal crop incomes, but could be adjusted upwards or downwards based on a variety of factors.
This meant that an understanding of geometry and arithmetic was virtually essential for revenue administrators. Mathematics was thus brought into the service of both the secular and the ritual domains.
Arithmetic operations (Ganit) such as addition, subtraction, multiplication, fractions, squares, cubes and roots are enumerated in the Narad Vishnu Purana attributed to Ved Vyas (pre-1000 BC). Examples of geometric knowledge (rekha-ganit) are to be found in the Sulva-Sutras of Baudhayana (800 BC) and Apasthmaba (600 BC) which describe techniques for the construction of ritual altars in use during the Vedic era.
It is likely that these texts tapped geometric knowledge that may have been acquired much earlier, possibly in the Harappan period. Baudhayana’s Sutra displays an understanding of basic geometric shapes and techniques of converting one geometric shape (such as a rectangle) to another of equivalent (or multiple, or fractional) area (such as a square).
While some of the formulations are approximations, others are accurate and reveal a certain degree of practical ingenuity as well as some theoretical understanding of basic geometric principles. Modern methods of multiplication and addition probably emerged from the techniques described in the Sulva-Sutras.
Pythagoras – the Greek mathematician and philosopher who lived in the 6th C B.C was familiar with the Upanishads and learnt his basic geometry from the Sulva Sutras.
An early statement of what is commonly known as the Pythagoras theorem is to be found in Baudhayana’s Sutra: The chord which is stretched across the diagonal of a square produces an area of double the size. A similar observation pertaining to oblongs is also noted. His Sutra also contains geometric solutions of a linear equation in a single unknown. Examples of quadratic equations also appear.
Apasthamba’s sutra (an expansion of Baudhayana’s with several original contributions) provides a value for the square root of 2 that is accurate to the fifth decimal place. Apasthamba also looked at the problems of squaring a circle, dividing a segment into seven equal parts, and a solution to the general linear equation. Jain texts from the 6th C BC such as the Surya Pragyapti describe ellipses.
Modern-day commentators are divided on how some of the results were generated. Some believe that these results came about through hit and trial – as rules of thumb, or as generalizations of observed examples.
Others believe that once the scientific method came to be formalized in the Nyaya-Sutras – proofs for such results must have been provided, but these have either been lost or destroyed, or else were transmitted orally through the Gurukul system, and only the final results were tabulated in the texts.
In any case, the study of Ganit i.e mathematics was given considerable importance in the Vedic period. The Vedang Jyotish (1000 BC) includes the statement: “Just as the feathers of a peacock and the jewel-stone of a snake are placed at the highest point of the body (at the forehead), similarly, the position of Ganit is the highest amongst all branches of the Vedas and the Shastras.”
(Many centuries later, Jain mathematician from Mysore, Mahaviracharya further emphasized the importance of mathematics: “Whatever object exists in this moving and non-moving world, cannot be understood without the base of Ganit (i.e. mathematics)”.)
(Exerpts from Indic Mathematics – India and the Scientific Revolution By David Gray, PhD)

By Team Prachodayat

Nada Brahma: The Ancient Science of Sound
Trees Have Life: Mahabharata explains about Photosynthesis
Prachodayat Team
No Comments

Post A Comment